Hopf Galois module structure of quartic Galois extensions of \mathbb{Q}

Daniel Gil Muñoz

Universitat Politècnica de Catalunya Departament de Matemàtiques

Hopf Algebras & Galois Module Theory Omaha (virtually), May 2021

Joint work with Anna Rio

 L/\mathbb{Q} quartic Galois extension of \mathbb{Q} . *H* Hopf Galois structure of L/\mathbb{Q} .

 L/\mathbb{Q} quartic Galois extension of \mathbb{Q} . *H* Hopf Galois structure of L/\mathbb{Q} . Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

 L/\mathbb{Q} quartic Galois extension of \mathbb{Q} . *H* Hopf Galois structure of L/\mathbb{Q} . Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N/\mathbb{Q} is an abelian extension with group G, \mathcal{O}_N is $\mathfrak{A}_{N/\mathbb{Q}}$ -free.

 L/\mathbb{Q} quartic Galois extension of \mathbb{Q} . *H* Hopf Galois structure of L/\mathbb{Q} . Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N/\mathbb{Q} is an abelian extension with group G, \mathcal{O}_N is $\mathfrak{A}_{N/\mathbb{Q}}$ -free.

Classical Galois structure \checkmark

 L/\mathbb{Q} quartic Galois extension of \mathbb{Q} . *H* Hopf Galois structure of L/\mathbb{Q} . Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N/\mathbb{Q} is an abelian extension with group G, \mathcal{O}_N is $\mathfrak{A}_{N/\mathbb{Q}}$ -free.

Classical Galois structure \checkmark

What about the non-classical Hopf Galois structures?

Table of contents

Hopf Galois module structure

- The reduction method
- Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L
- 2 Cyclic quartic extensions of Q

Hopf Galois module structure

Cyclic quartic extensions of Q Biquadratic extensions of Q

Table of contents

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

2 Cyclic quartic extensions of $\mathbb Q$

 \bigcirc Biquadratic extensions of $\mathbb Q$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

L/K H-Galois extension of number fields.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

L/K H-Galois extension of number fields.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

L/K H-Galois extension of number fields. Assume that \mathcal{O}_K is a PID.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois extension of number fields.

Assume that $\mathcal{O}_{\mathcal{K}}$ is a PID.

Normal basis theorem (HG version): *L* is *H*-free of rank one.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois extension of number fields.

Assume that $\mathcal{O}_{\mathcal{K}}$ is a PID.

Normal basis theorem (HG version): *L* is *H*-free of rank one.

Associated order of \mathcal{O}_L in H:

$$\mathfrak{A}_{H} := \{ h \in H \, | \, h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L} \}.$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois extension of number fields.

Assume that $\mathcal{O}_{\mathcal{K}}$ is a PID.

Normal basis theorem (HG version): *L* is *H*-free of rank one.

Associated order of \mathcal{O}_L in H:

$$\mathfrak{A}_{H} := \{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\}.$$

If \mathcal{O}_L is \mathfrak{H} -free, then $\mathfrak{H} = \mathfrak{A}_H$.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K *H*-Galois extension of number fields. Assume that \mathcal{O}_K is a PID.

Normal basis theorem (HG version): *L* is *H*-free of rank one.

Associated order of \mathcal{O}_L in H:

$$\mathfrak{A}_{H} := \{h \in H \,|\, h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\}.$$

If \mathcal{O}_L is \mathfrak{H} -free, then $\mathfrak{H} = \mathfrak{A}_H$.

Two kind of problems:

- Compute an \mathcal{O}_K -basis of \mathfrak{A}_H .
- Is O_L 𝔄_H-free?

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K *H*-Galois extension of number fields. Assume that \mathcal{O}_K is a PID.

Normal basis theorem (HG version): *L* is *H*-free of rank one.

Associated order of \mathcal{O}_L in H:

$$\mathfrak{A}_{H} := \{ h \in H \, | \, h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L} \}.$$

If \mathcal{O}_L is \mathfrak{H} -free, then $\mathfrak{H} = \mathfrak{A}_H$.

Two kind of problems:

- Compute an \mathcal{O}_K -basis of \mathfrak{A}_H .
- Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

L/K H-Galois of degree n.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois of degree n.

 $W = \{w_i\}_{i=1}^n$ K-basis of $H, B = \{\gamma_i\}_{i=1}^n$ K-basis of L.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois of degree *n*. $W = \{w_i\}_{i=1}^n$ *K*-basis of *H*, $B = \{\gamma_j\}_{j=1}^n$ *K*-basis of *L*. For $1 \le j \le n$, set

$$M_{j}(H,L) := \begin{pmatrix} | & | & \cdots & | \\ (w_{1} \cdot \gamma_{j})_{B} & (w_{2} \cdot \gamma_{j})_{B} & \cdots & (w_{n} \cdot \gamma_{j})_{B} \\ | & | & \cdots & | \end{pmatrix} \in \mathcal{M}_{n}(K),$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

L/K H-Galois of degree n. $W = \{w_i\}_{i=1}^n \text{ K-basis of } H, B = \{\gamma_j\}_{j=1}^n \text{ K-basis of } L.$ For $1 \le j \le n$, set $M_j(H,L) \coloneqq \begin{pmatrix} | & | & \cdots & | \\ (w_1 \cdot \gamma_j)_B & (w_2 \cdot \gamma_j)_B & \cdots & (w_n \cdot \gamma_j)_B \\ | & | & \cdots & | \end{pmatrix} \in \mathcal{M}_n(K),$

The matrix of the action of H on L is defined as

$$M(H,L) = \frac{\binom{M_1(H,L)}{\cdots}}{\binom{M_n(H,L)}{M_n(H,L)}} \in \mathcal{M}_{n^2 \times n}(K).$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

The matrix of the action of *H* on *L* is defined as

$$M(H,L) = \begin{pmatrix} M_1(H,L) \\ \cdots \\ M_n(H,L) \end{pmatrix} \in \mathcal{M}_{n^2 \times n}(K).$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

The matrix of the action of H on L is defined as

$$M(H,L) = \begin{pmatrix} M_1(H,L) \\ \cdots \\ M_n(H,L) \end{pmatrix} \in \mathcal{M}_{n^2 \times n}(K).$$

It is the matrix of the linear map

$$\begin{array}{rcccc}
\rho_H \colon & H & \longrightarrow & \operatorname{End}_{\mathcal{K}}(L) \\
& h & \longmapsto & x \mapsto h \cdot x
\end{array}$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

The matrix of the action of H on L is defined as

$$M(H,L) = \frac{\binom{M_1(H,L)}{\cdots}}{\binom{M_n(H,L)}{M_n(H,L)}} \in \mathcal{M}_{n^2 \times n}(K).$$

It is the matrix of the linear map

$$\rho_{H}: \begin{array}{ccc} H & \longrightarrow & \operatorname{End}_{K}(L) & \cong \mathcal{M}_{n}(K) \\ h & \longmapsto & x \mapsto h \cdot x \end{array}$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

The matrix of the action of H on L is defined as

$$M(H,L) = \frac{\binom{M_1(H,L)}{\cdots}}{\binom{M_n(H,L)}{M_n(H,L)}} \in \mathcal{M}_{n^2 \times n}(K).$$

It is the matrix of the linear map

$$\rho_{H}: \begin{array}{ccc} H & \longrightarrow & \operatorname{End}_{K}(L) & \cong \mathcal{M}_{n}(K) \\ h & \longmapsto & x \mapsto h \cdot x \end{array}$$

In $\operatorname{End}_{\mathcal{K}}(L)$ we fix the canonical basis (with respect to *B*).

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

Assume that *B* is an $\mathcal{O}_{\mathcal{K}}$ -basis of $\mathcal{O}_{\mathcal{L}}$.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Assume that *B* is an $\mathcal{O}_{\mathcal{K}}$ -basis of $\mathcal{O}_{\mathcal{L}}$.

Key idea: We reduce integrally M(H, L) to an $n \times n$ matrix.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

Assume that *B* is an \mathcal{O}_K -basis of \mathcal{O}_L .

Key idea: We reduce integrally M(H, L) to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_n(K)$ and a unimodular matrix $U \in \operatorname{GL}_{n^2}(\mathcal{O}_K)$ with the property that

$$UM(H,L) = \left(egin{matrix} D \\ \hline O \end{array}
ight).$$

We say that D is a **reduced matrix** of M(H, L).

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

Assume that *B* is an \mathcal{O}_K -basis of \mathcal{O}_L .

Key idea: We reduce integrally M(H, L) to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_n(K)$ and a unimodular matrix $U \in \operatorname{GL}_{n^2}(\mathcal{O}_K)$ with the property that

$$UM(H,L) = \left(\frac{D}{O} \right).$$

We say that D is a **reduced matrix** of M(H, L).

D is a change basis matrix from a basis of \mathfrak{A}_H to *W*.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

Assume that *B* is an \mathcal{O}_K -basis of \mathcal{O}_L .

Key idea: We reduce integrally M(H, L) to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_n(K)$ and a unimodular matrix $U \in \operatorname{GL}_{n^2}(\mathcal{O}_K)$ with the property that

$$UM(H,L) = \left(\frac{D}{O} \right).$$

We say that D is a **reduced matrix** of M(H, L).

D is a change basis matrix from a basis of \mathfrak{A}_H to *W*.

The columns of D^{-1} form a basis of the associated order \mathfrak{A}_H .

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

• Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

• Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

Let $\beta = \sum_{j=1}^{n} \beta_j \gamma_j \in \mathcal{O}_L$ be a potential \mathfrak{A}_H -generator of \mathcal{O}_L .

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

• Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

Let $\beta = \sum_{i=1}^{n} \beta_i \gamma_i \in \mathcal{O}_L$ be a potential \mathfrak{A}_H -generator of \mathcal{O}_L .

We define $M_{\beta}(H, L) := \sum_{j=1}^{n} \beta_j M_j(H, L)$.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

• Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

Let $\beta = \sum_{j=1}^{n} \beta_j \gamma_j \in \mathcal{O}_L$ be a potential \mathfrak{A}_H -generator of \mathcal{O}_L . We define $M_\beta(H, L) := \sum_{j=1}^{n} \beta_j M_j(H, L)$. Then,

$$M_{\beta}(H,L) = \sum_{j=1}^{n} \beta_{j} M_{j}(H,L)$$
$$= \begin{pmatrix} | & | & \dots & | \\ (w_{1} \cdot \beta)_{B} & (w_{2} \cdot \beta)_{B} & \dots & (w_{n} \cdot \beta)_{B} \\ | & | & \dots & | \end{pmatrix}$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

• Is $\mathcal{O}_L \mathfrak{A}_H$ -free?

Let $\beta = \sum_{j=1}^{n} \beta_j \gamma_j \in \mathcal{O}_L$ be a potential \mathfrak{A}_H -generator of \mathcal{O}_L . We define $M_\beta(H, L) := \sum_{j=1}^{n} \beta_j M_j(H, L)$. Then,

$$M_{\beta}(H,L) = \sum_{j=1}^{n} \beta_j M_j(H,L)$$
$$= \begin{pmatrix} | & | & \dots & | \\ (w_1 \cdot \beta)_B & (w_2 \cdot \beta)_B & \dots & (w_n \cdot \beta)_B \\ | & | & \dots & | \end{pmatrix}$$

If
$$\mathfrak{H} := \langle w_1, \dots, w_n \rangle_{\mathcal{O}_K}$$
,
 $D_{\beta}(H, L) := \det(M_{\beta}(H, L)) = [\mathcal{O}_L : \mathfrak{H} \cdot \beta]_{\mathcal{O}_K}$.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

 $\implies I_W(H,L) \coloneqq [\mathfrak{A}_H : \mathfrak{H}]_{\mathcal{O}_K} = \det(D).$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

$$\Longrightarrow I_W(H,L) \coloneqq [\mathfrak{A}_H : \mathfrak{H}]_{\mathcal{O}_K} = \det(D).$$

 $[\mathcal{O}_L:\mathfrak{H}\cdot\beta]_{\mathcal{O}_K}=[\mathcal{O}_L:\mathfrak{A}_H\cdot\beta]_{\mathcal{O}_K}[\mathfrak{A}_H\cdot\beta:\mathfrak{H}\cdot\beta]_{\mathcal{O}_K}$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

$$\Longrightarrow I_W(H,L) \coloneqq [\mathfrak{A}_H : \mathfrak{H}]_{\mathcal{O}_K} = \det(D).$$

$$[\mathcal{O}_L:\mathfrak{H}\cdot\beta]_{\mathcal{O}_K}=[\mathcal{O}_L:\mathfrak{A}_H\cdot\beta]_{\mathcal{O}_K}[\mathfrak{A}_H:\mathfrak{H}]_{\mathcal{O}_K}$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

$$\Longrightarrow I_W(H,L) \coloneqq [\mathfrak{A}_H : \mathfrak{H}]_{\mathcal{O}_K} = \det(D).$$

$$D_{\beta}(H,L) = [\mathcal{O}_{L} : \mathfrak{A}_{H} \cdot \beta]_{\mathcal{O}_{K}} I_{W}(H,L)$$

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Now, *D* is the change basis matrix from a basis of \mathfrak{A}_H to a basis of \mathfrak{H} .

$$\Longrightarrow I_W(H,L) \coloneqq [\mathfrak{A}_H : \mathfrak{H}]_{\mathcal{O}_K} = \det(D).$$

$$D_{\beta}(H,L) = [\mathcal{O}_{L} : \mathfrak{A}_{H} \cdot \beta]_{\mathcal{O}_{K}} I_{W}(H,L)$$

Corollary

 \mathcal{O}_L is \mathfrak{A}_H -free with generator β if and only if $I_W(H, L) = D_\beta(H, L)$ up to multiplication by a unit of \mathcal{O}_K .

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Procedure:

1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

- 1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.
- 2. We compute a reduced matrix of M(H, L) and $I_W(H, L)$.

- 1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.
- 2. We compute a reduced matrix of M(H, L) and $I_W(H, L)$.
- 3. For a given $\beta \in \mathcal{O}_L$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.

- 1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.
- 2. We compute a reduced matrix of M(H, L) and $I_W(H, L)$.
- 3. For a given $\beta \in \mathcal{O}_L$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.
- 4. If $D_{\beta}(H, L) = I_{W}(H, L)$ (up to multiplication by unit), then \mathcal{O}_{L} is \mathfrak{A}_{H} -free with generator β .

- 1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.
- 2. We compute a reduced matrix of M(H, L) and $I_W(H, L)$.
- 3. For a given $\beta \in \mathcal{O}_L$, we find the determinant $D_\beta(H, L)$ of the matrix $M_\beta(H, L)$.
- 4. If $D_{\beta}(H, L) = I_W(H, L)$ (up to multiplication by unit), then \mathcal{O}_L is \mathfrak{A}_H -free with generator β .

If $K = \mathbb{Q}$, we need $D_{\beta}(H, L) = I_W(H, L)$ up to sign.

- 1. We find the entries of M(H, L), where in *L* we fix an integral basis *B*.
- 2. We compute a reduced matrix of M(H, L) and $I_W(H, L)$.
- 3. For a given $\beta \in \mathcal{O}_L$, we find the determinant $D_\beta(H, L)$ of the matrix $M_\beta(H, L)$.
- 4. If $D_{\beta}(H, L) = I_{W}(H, L)$ (up to multiplication by unit), then \mathcal{O}_{L} is \mathfrak{A}_{H} -free with generator β .

If $K = \mathbb{Q}$, we need $D_{\beta}(H, L) = I_W(H, L)$ up to sign.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Assume L/K is Galois with group *G*.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_L

Assume L/K is Galois with group *G*.

Suppose that we know how *G* acts on some *K*-basis of *L*.

The reduction method Determining the \mathfrak{A}_H -freeness of \mathcal{O}_I

Assume L/K is Galois with group *G*.

Suppose that we know how G acts on some K-basis of L.

Let *H* be a Hopf Galois structure of L/K.

Assume L/K is Galois with group G.

Suppose that we know how *G* acts on some *K*-basis of *L*.

Let *H* be a Hopf Galois structure of L/K.

• Since *H* acts as linear combinations of elements of *G*, we know how *H* acts on that *K*-basis of *L*.

Assume L/K is Galois with group G.

Suppose that we know how *G* acts on some *K*-basis of *L*.

Let *H* be a Hopf Galois structure of L/K.

- Since *H* acts as linear combinations of elements of *G*, we know how *H* acts on that *K*-basis of *L*.
- The action of *H* on any other *K*-basis of *L* is computed using the linearity (change basis of *L*).

Assume L/K is Galois with group G.

Suppose that we know how *G* acts on some *K*-basis of *L*.

Let *H* be a Hopf Galois structure of L/K.

- Since *H* acts as linear combinations of elements of *G*, we know how *H* acts on that *K*-basis of *L*.
- The action of *H* on any other *K*-basis of *L* is computed using the linearity (change basis of *L*).

Shortcut

In order to determine the action of H on any K-basis of L, it is enough to know the action of G on some K-basis of L.

Table of contents

- 2 Cyclic quartic extensions of \mathbb{Q}
- \bigcirc Biquadratic extensions of $\mathbb Q$

Let L/K be a cyclic quartic extension with $G = \text{Gal}(L/K) = \langle \sigma \rangle$.

Let L/K be a cyclic quartic extension with $G = \text{Gal}(L/K) = \langle \sigma \rangle$.

Greither-Pareigis: Hopf Galois structures of L/K correspond to regular *G*-stable subgroups of Perm(*G*).

Let L/K be a cyclic quartic extension with $G = \text{Gal}(L/K) = \langle \sigma \rangle$. Greither-Pareigis: Hopf Galois structures of L/K correspond to regular *G*-stable subgroups of Perm(*G*).

There are two: $\lambda(G)$ and the one generated by the premutations

$$\mu = (\mathbf{1}_G, \sigma^2)(\sigma, \sigma^3), \ \eta = (\mathbf{1}_G, \sigma)(\sigma^2, \sigma^3).$$

Let L/K be a cyclic quartic extension with $G = \text{Gal}(L/K) = \langle \sigma \rangle$. Greither-Pareigis: Hopf Galois structures of L/K correspond to regular *G*-stable subgroups of Perm(*G*).

There are two: $\lambda(G)$ and the one generated by the premutations

$$\mu = (\mathbf{1}_G, \sigma^2)(\sigma, \sigma^3), \ \eta = (\mathbf{1}_G, \sigma)(\sigma^2, \sigma^3).$$

Proposition

L/K has a unique non-classical Hopf Galois structure, which has K-basis

$$\{\mathrm{Id}, \mu, \eta + \mu\eta, \mathbf{Z}(\eta - \mu\eta)\},\$$

where z is the square root of a non-square element in K.

Let L/\mathbb{Q} be a cyclic quartic extension of number fields.

Let L/\mathbb{Q} be a cyclic quartic extension of number fields. We need:

Let L/\mathbb{Q} be a cyclic quartic extension of number fields. We need:

1. A \mathbb{Z} -basis of \mathcal{O}_L .

Let L/\mathbb{Q} be a cyclic quartic extension of number fields. We need:

- **1**. A \mathbb{Z} -basis of \mathcal{O}_L .
- 2. The action of *H* on that basis.

Let L/\mathbb{Q} be a cyclic quartic extension of number fields. We need:

- **1**. A \mathbb{Z} -basis of \mathcal{O}_L .
- 2. The action of *H* on that basis.

Proposition

$$L = \mathbb{Q}(\sqrt{a(d+b\sqrt{d})})$$
, where:

- $a \in \mathbb{Z}$ is odd square-free and $b \in \mathbb{Z}_{>0}$.
- $d = b^2 + c^2$ for some $c \in \mathbb{Z}_{>0}$ and d is square-free.

•
$$gcd(a, d) = 1$$
.

Hopf Galois module structure

Cyclic quartic extensions of $\ensuremath{\mathbb{Q}}$

Biquadratic extensions of Q

Let $z = \sqrt{a(d + b\sqrt{d})}$.

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of *z* is

$$f(x) = x^4 - 2adx^2 + a^2c^2d$$

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d.$

Let
$$w = \sqrt{a(d - b\sqrt{d})}$$

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d$.

Let $w = \sqrt{a(d - b\sqrt{d})}$ \implies the roots of *f* are *z*, *w* and their negatives.

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d$.

Let $w = \sqrt{a(d - b\sqrt{d})}$ \implies the roots of *f* are *z*, *w* and their negatives.

Elements of *G* are permutations of $\{z, w, -z, -w\}$.

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d$.

Let $w = \sqrt{a(d - b\sqrt{d})}$ \implies the roots of *f* are *z*, *w* and their negatives.

Elements of *G* are permutations of $\{z, w, -z, -w\}$. We can assume that $\sigma = (z, w, -z, -w)$.

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d$.

Let $w = \sqrt{a(d - b\sqrt{d})}$ \implies the roots of *f* are *z*, *w* and their negatives.

Elements of *G* are permutations of $\{z, w, -z, -w\}$. We can assume that $\sigma = (z, w, -z, -w)$.

Then, we know how *G* acts on the *K*-basis $\{1, \sqrt{d}, z, w\}$ of *L*:

Let $z = \sqrt{a(d + b\sqrt{d})}$. The minimal polynomial of z is $f(x) = x^4 - 2adx^2 + a^2c^2d$.

Let $w = \sqrt{a(d - b\sqrt{d})}$ \implies the roots of *f* are *z*, *w* and their negatives.

Elements of *G* are permutations of $\{z, w, -z, -w\}$. We can assume that $\sigma = (z, w, -z, -w)$.

Then, we know how G acts on the K-basis $\{1, \sqrt{d}, z, w\}$ of L:

$$\begin{aligned} \sigma(\sqrt{d}) &= -\sqrt{d}, \quad \sigma(z) = w, \quad \sigma(w) = -z, \\ \sigma^2(\sqrt{d}) &= \sqrt{d}, \quad \sigma^2(z) = -z, \quad \sigma^2(w) = -w, \\ \sigma^3(\sqrt{d}) &= -\sqrt{d}, \quad \sigma^3(z) = -w, \quad \sigma^3(w) = z. \end{aligned}$$

We are able to determine the action of a Hopf Galois structure on any *K*-basis of *L*.

We are able to determine the action of a Hopf Galois structure on any *K*-basis of *L*.

In particular, on the integral ones.

We are able to determine the action of a Hopf Galois structure on any *K*-basis of *L*.

In particular, on the integral ones.

Case	Integral basis
1	$\{1, \sqrt{d}, z, w\}$
2	$\left\{1,\frac{1+\sqrt{d}}{2},Z,W\right\}$
3	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{z+w}{2}, \frac{z-w}{2}\right\}$
4	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z+w}{4}, \frac{1-\sqrt{d}+z-w}{4}\right\}$
5	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z-w}{4}, \frac{1-\sqrt{d}+z+w}{4}\right\}$

We are able to determine the action of a Hopf Galois structure on any *K*-basis of *L*.

In particular, on the integral ones.

Case	Integral basis
1	$\{1, \sqrt{d}, z, w\}$
2	$\left\{1,\frac{1+\sqrt{d}}{2}, Z, W\right\}$
3	$\left\{1,\frac{1+\sqrt{d}}{2},\frac{z+w}{2},\frac{z-w}{2}\right\}$
4	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z+w}{4}, \frac{1-\sqrt{d}+z-w}{4}\right\}$
5	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z-w}{4}, \frac{1-\sqrt{d}+z+w}{4}\right\}$

We call $\{\gamma_1, \gamma_2, \gamma_3, \gamma_4\}$ the integral basis of *L*.

Case 1:

$$D=egin{pmatrix} 1&1&2&0\ 0&2&2&-2c\ 0&0&4&0\ 0&0&0&2b \end{pmatrix}$$

$$I_{W}(H, L) = 16b D_{\beta}(H, L) = 16b\beta_{1}\beta_{2}(\beta_{3}^{2} + \beta_{4}^{2})$$

Case 1:

$$D = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad \begin{array}{l} I_W(H,L) = 16b \\ D_\beta(H,L) = 16b\beta_1\beta_2(\beta_3^2 + \beta_4^2) \end{array}$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_1 + \gamma_2 + \gamma_3$.

Case 1:

$$D = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad I_W(H, L) = 16b \\ D_\beta(H, L) = 16b\beta_1\beta_2(\beta_3^2 + \beta_4^2)$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_1 + \gamma_2 + \gamma_3$.

Cases 2 and 3:

$$D = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -2c \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad I_W(H, L) = 8b \\ D_\beta(H, L) = \pm 8b\beta_2(\beta_3^2 + \beta_4^2)(2\beta_1 + \beta_2)$$

Case 1:

$$D = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad \begin{array}{l} I_W(H,L) = 16b \\ D_\beta(H,L) = 16b\beta_1\beta_2(\beta_3^2 + \beta_4^2) \end{array}$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_1 + \gamma_2 + \gamma_3$.

Cases 2 and 3:

$$D = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -2c \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad \begin{matrix} I_W(H,L) = 8b \\ D_\beta(H,L) = \pm 8b\beta_2(\beta_3^2 + \beta_4^2)(2\beta_1 + \beta_2) \end{matrix}$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_2 + \gamma_3$.

Cases 4 and 5:

$$D = \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & -c \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2b \end{pmatrix}$$

$$egin{aligned} &I_W(H,L)=2b\ &D_eta(H,L)=\mp 2b(eta_3^2+eta_4^2)(2eta_2+eta_3-eta_4)(4eta_1+2eta_2+eta_3+eta_4) \end{aligned}$$

Cases 4 and 5:

$$D = \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & -c \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2b \end{pmatrix} \qquad \begin{array}{l} I_W(H,L) = 2b \\ D_\beta(H,L) = \mp 2b(\beta_3^2 + \beta_4^2)(2\beta_2 + \beta_3 - \beta_4)(4\beta_1 + 2\beta_2 + \beta_3 + \beta_4) \end{array}$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_2 - \gamma_3$.

Cases 4 and 5:

$$D=egin{pmatrix} 1 & 0 & 0 & c \ 0 & 1 & 0 & -c \ 0 & 0 & 1 & b \ 0 & 0 & 0 & 2b \end{pmatrix} \qquad egin{pmatrix} I_W(H,L)=2b \ D_eta(H,L)=\mp 2b(eta_3^2+eta_4^2)(2eta_2+eta_3-eta_4)(4eta_1+2eta_2+eta_3+eta_4) \end{pmatrix}$$

 \mathcal{O}_L is \mathfrak{A}_H -free with generator $\beta = \gamma_2 - \gamma_3$.

Theorem

Let L/\mathbb{Q} is a cyclic quartic extension. Then \mathcal{O}_L is free over its associated order at every Hopf Galois structure of L/\mathbb{Q} .

Table of contents

- 2 Cyclic quartic extensions of ${\mathbb Q}$
- Biquadratic extensions of \mathbb{Q}

Let L/K be a biquadratic extension with $G = \text{Gal}(L/K) = \langle \sigma, \tau \rangle$.

Let L/K be a biquadratic extension with $G = \text{Gal}(L/K) = \langle \sigma, \tau \rangle$.

There are three non-classical Hopf Galois structures, given by the subgroups generated by:

Let L/K be a biquadratic extension with $G = \text{Gal}(L/K) = \langle \sigma, \tau \rangle$.

There are three non-classical Hopf Galois structures, given by the subgroups generated by:

•
$$\eta_1 = (\mathbf{1}_G, \sigma\tau, \tau, \sigma).$$

•
$$\eta_2 = (\mathbf{1}_G, \sigma\tau, \sigma, \tau).$$

•
$$\eta_3 = (\mathbf{1}_G, \tau, \sigma \tau, \sigma).$$

Proposition

The non-classical Hopf Galois structures $\{H_i\}_{i=1}^3$ have K-bases

$$\left\{\mathrm{Id},\eta_i^2,\eta_i+\eta_i^3,Z_i(\eta_i-\eta_i^3)\right\},\,$$

where:

Let L/K be a biquadratic extension with $G = \text{Gal}(L/K) = \langle \sigma, \tau \rangle$.

There are three non-classical Hopf Galois structures, given by the subgroups generated by:

•
$$\eta_1 = (\mathbf{1}_G, \sigma\tau, \tau, \sigma).$$

•
$$\eta_2 = (\mathbf{1}_G, \sigma\tau, \sigma, \tau).$$

• $\eta_3 = (\mathbf{1}_G, \tau, \sigma\tau, \sigma).$

Proposition

The non-classical Hopf Galois structures $\{H_i\}_{i=1}^3$ have K-bases

$$\left\{\mathrm{Id},\eta_i^2,\eta_i+\eta_i^3,Z_i(\eta_i-\eta_i^3)\right\},\,$$

where:

•
$$E_1 = L^{\langle \tau \rangle}, E_2 = L^{\langle \sigma \rangle}, E_3 = L^{\langle \sigma \tau \rangle}.$$

• For each $i \in \{1, 2, 3\}$, $z_i \in E_i - K$ and $z_i^2 \in K$.

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$. $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

- $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:
 - $m, n \in \mathbb{Z}$ square-free.

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$. $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

• $m, n \in \mathbb{Z}$ square-free.

•
$$k = \frac{mn}{d^2}, d = \gcd(m, n).$$

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

- $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:
 - $m, n \in \mathbb{Z}$ square-free.

•
$$k = \frac{mn}{d^2}, d = \gcd(m, n).$$

• *m*, *n* and *k* are exchangeable.

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

- $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:
 - $m, n \in \mathbb{Z}$ square-free.

•
$$k = \frac{mn}{d^2}, d = \gcd(m, n).$$

• *m*, *n* and *k* are exchangeable.

Lattice of intermediate fields:

Let L/\mathbb{Q} be a biquadratic extension with $G = \text{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

- $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:
 - $m, n \in \mathbb{Z}$ square-free.

•
$$k = \frac{mn}{d^2}, d = \gcd(m, n).$$

• *m*, *n* and *k* are exchangeable.

Lattice of intermediate fields:

Action of *G* on the *K*-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of *L*:

$$\sigma(\sqrt{m}) = -\sqrt{m}, \quad \sigma(\sqrt{n}) = \sqrt{n}, \quad \sigma(\sqrt{k}) = -\sqrt{k},$$

$$\tau(\sqrt{m}) = \sqrt{m}, \quad \tau(\sqrt{n}) = -\sqrt{n}, \quad \tau(\sqrt{k}) = -\sqrt{k},$$

$$\sigma\tau(\sqrt{m}) = -\sqrt{m}, \quad \sigma\tau(\sqrt{n}) = -\sqrt{n}, \quad \sigma\tau(\sqrt{k}) = \sqrt{k}$$

Action of *G* on the *K*-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of *L*:

$$\sigma(\sqrt{m}) = -\sqrt{m}, \quad \sigma(\sqrt{n}) = \sqrt{n}, \quad \sigma(\sqrt{k}) = -\sqrt{k},$$

$$\tau(\sqrt{m}) = \sqrt{m}, \quad \tau(\sqrt{n}) = -\sqrt{n}, \quad \tau(\sqrt{k}) = -\sqrt{k},$$

$$\sigma\tau(\sqrt{m}) = -\sqrt{m}, \quad \sigma\tau(\sqrt{n}) = -\sqrt{n}, \quad \sigma\tau(\sqrt{k}) = \sqrt{k}$$

Case	Integral basis		
$m, n, k \equiv 1 (4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)\right\}$		
$m \equiv 3 (4), n, k \equiv 2 (4)$	$\left\{1,\sqrt{m},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right\}$		
$m \equiv 1 \ (4), \ n, k \not\equiv 1 \ (4)$	$\left\{1,\frac{1+\sqrt{m}}{2},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right\}$		

Action of *G* on the *K*-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of *L*:

$$\sigma(\sqrt{m}) = -\sqrt{m}, \quad \sigma(\sqrt{n}) = \sqrt{n}, \quad \sigma(\sqrt{k}) = -\sqrt{k},$$

$$\tau(\sqrt{m}) = \sqrt{m}, \quad \tau(\sqrt{n}) = -\sqrt{n}, \quad \tau(\sqrt{k}) = -\sqrt{k},$$

$$\sigma\tau(\sqrt{m}) = -\sqrt{m}, \quad \sigma\tau(\sqrt{n}) = -\sqrt{n}, \quad \sigma\tau(\sqrt{k}) = \sqrt{k}$$

Case	Integral basis		
$m, n, k \equiv 1 (4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)\right\}$		
$m \equiv 3 (4), n, k \equiv 2 (4)$	$\left\{1,\sqrt{m},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right\}$		
$m \equiv 1 (4), n, k \not\equiv 1 (4)$	$\left\{1,\frac{1+\sqrt{m}}{2},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right\}$		

L/K is tamely ramified if and only if $m, n \equiv 1 \pmod{4}$

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a}, \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a}, \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

His proof uses the theory of idèles.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a} , \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

His proof uses the theory of idèles.

 $x^2 + ay^2 = \pm 2g$ are generalized Pell equations.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a} , \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

His proof uses the theory of idèles.

 $x^2 + ay^2 = \pm 2g$ are generalized Pell equations.

• If a > 0, they have a finite number of solutions.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a} , \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

His proof uses the theory of idèles.

- $x^2 + ay^2 = \pm 2g$ are generalized Pell equations.
 - If a > 0, they have a finite number of solutions.
 - If *a* < 0, there could be infinitely many and there are algorithms of computation.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition (Truman)

Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1 \pmod{4}$, and let $g = \gcd(a, b)$. If H is the non-classical Hopf Galois structure of L/\mathbb{Q} given by \sqrt{a} , \mathcal{O}_L is \mathfrak{A}_H -free if and only if there are $x, y \in \mathbb{Z}$ such that

$$x^2 + ay^2 = \pm 2g.$$

His proof uses the theory of idèles.

- $x^2 + ay^2 = \pm 2g$ are generalized Pell equations.
 - If a > 0, they have a finite number of solutions.
 - If *a* < 0, there could be infinitely many and there are algorithms of computation.

What if we use the reduction method?

Case 1: $m, n, k \equiv 1 \pmod{4}$

Reduced matrix of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

Reduced matrix of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

/1	0	0	0\	
$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	1	0	0	
0	0	1	1	•
0/	0	0	2)	

For
$$\beta \in \mathcal{O}_L$$
,
 $D_\beta(H_1, L) = -2(2\beta_2 + \beta_4)(4\beta_1 + 2\beta_2 + 2\beta_3 + \beta_4)$
 $\left(2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2\right)$.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Reduced matrix of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

/1	0	0	0\	
$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	1	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
0	0	1	1	
/0	0	0	$\binom{1}{2}$	

For
$$\beta \in \mathcal{O}_L$$
,
 $D_\beta(H_1, L) = -2(2\beta_2 + \beta_4)(4\beta_1 + 2\beta_2 + 2\beta_3 + \beta_4)$
 $\left(2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2\right)$.

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Let $f(\beta_3) = 2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 - s, s \in \{-1, 1\}.$

Case 1: $m, n, k \equiv 1 \pmod{4}$

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Let $f(\beta_3) = 2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 - s$, $s \in \{-1, 1\}$. It has discriminant

 $\Delta = 4(-m\beta_4^2 + 2ds).$

Case 1: $m, n, k \equiv 1 \pmod{4}$

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Let $f(\beta_3) = 2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 - s$, $s \in \{-1, 1\}$. It has discriminant

$$\Delta = 4(-m\beta_4^2 + 2ds).$$

This is a square if and only if there are $x, y \in \mathbb{Z}$ if and only if

$$x^2 = -my^2 + 2ds.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

If we want β to be a free generator, we must have

$$2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 = \pm 1.$$

Let $f(\beta_3) = 2d\beta_3^2 + 2m\beta_3\beta_4 + \frac{m}{d}\frac{m+1}{2}\beta_4^2 - s$, $s \in \{-1, 1\}$. It has discriminant

$$\Delta = 4(-m\beta_4^2 + 2ds).$$

This is a square if and only if there are $x, y \in \mathbb{Z}$ if and only if

$$x^2 + my^2 = 2ds.$$

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition

For $i \in \{1, 2, 3\}$, \mathcal{O}_L is \mathfrak{A}_{H_i} -free if and only if there exist integers $x, y \in \mathbb{Z}$ such that: 1. $x^2 + my^2 = \pm 2d$, if i = 1. 2. $x^2 + ny^2 = \pm 2d$, if i = 2. 3. $x^2 + ky^2 = \pm 2\frac{n}{d}$, if i = 3.

Case 1: $m, n, k \equiv 1 \pmod{4}$

Proposition

For $i \in \{1, 2, 3\}$, \mathcal{O}_L is \mathfrak{A}_{H_i} -free if and only if there exist integers $x, y \in \mathbb{Z}$ such that: 1. $x^2 + my^2 = \pm 2d$, if i = 1. 2. $x^2 + ny^2 = \pm 2d$, if i = 2. 3. $x^2 + ky^2 = \pm 2\frac{n}{d}$, if i = 3.

This matches with Truman's result because $\frac{n}{d} = \gcd(k, n)$.

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Daniel Gil Muñoz Quartic extensions of Q

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Reduced matrices of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Reduced matrices of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Given $\beta \in \mathcal{O}_L$,

$$\begin{split} D_{\beta}(H_1,L) &= -32\beta_1\beta_2 \left(d\beta_3^2 + d\beta_3\beta_4 + \frac{1}{4} \left(d + \frac{m}{d} \right) \beta_4^2 \right), \\ D_{\beta}(H_2,L) &= 8\beta_1(2\beta_3 + \beta_4) \left(2d\beta_2^2 + \frac{n}{2d}\beta_4^2 \right), \\ D_{\beta}(H_3,L) &= 8\beta_1\beta_4 \left(2\frac{m}{d}\beta_2^2 + 2\frac{n}{d}\beta_3^2 + 2\frac{n}{d}\beta_3\beta_4 + \frac{n}{2d}\beta_4^2 \right). \end{split}$$

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Proposition

For $i \in \{1, 2, 3\}$, \mathcal{O}_L is \mathfrak{A}_{H_i} -free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1.
$$x^2 + my^2 = \pm 4d$$
, if $i = 1$.

2.
$$x^2 + ny^2 = \pm 2d$$
, if $i = 2$.

3.
$$x^2 + ky^2 = \pm 2\frac{n}{d}$$
, if $i = 3$.

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Proposition

For $i \in \{1, 2, 3\}$, \mathcal{O}_L is \mathfrak{A}_{H_i} -free if and only if there exist integers $x, y \in \mathbb{Z}$ such that: 1. $x^2 + my^2 = \pm 4d$, if i = 1.

2.
$$x^2 + ny^2 = \pm 2d$$
, if $i = 2$.

3.
$$x^2 + ky^2 = \pm 2\frac{n}{d}$$
, if $i = 3$.

n and k play exactly the same role.

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Proposition

For $i \in \{1, 2, 3\}$, \mathcal{O}_L is \mathfrak{A}_{H_i} -free if and only if there exist integers $x, y \in \mathbb{Z}$ such that: 1. $x^2 + my^2 = \pm 4d$, if i = 1.

2.
$$x^2 + ny^2 = \pm 2d$$
, if $i = 2$.

3.
$$x^2 + ky^2 = \pm 2\frac{n}{d}$$
, if $i = 3$.

n and k play exactly the same role.

Corollary

The Pell equation $x^2 + ny^2 = \pm 2d$ has solutions if and only if so has $x^2 + ny^2 = \pm 2\frac{n}{d}$.

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Proposition

- If m > 0, O_L is not A_{H1}-free unless m and n are coprime or m divides n.
- 2. If n > 0 (resp. k > 0), then \mathcal{O}_L is not \mathfrak{A}_{H_2} -free (resp. not \mathfrak{A}_{H_3} -free) unless n = 2d.

Case 2: $m \equiv 3 \pmod{4}$, $n, k \equiv 2 \pmod{4}$

Proposition

- If m > 0, O_L is not A_{H1}-free unless m and n are coprime or m divides n.
- 2. If n > 0 (resp. k > 0), then \mathcal{O}_L is not \mathfrak{A}_{H_2} -free (resp. not \mathfrak{A}_{H_3} -free) unless n = 2d.

Corollary

The unique totally real biquadratic extensions $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ of \mathbb{Q} with $m \equiv 3 \pmod{4}$ and $n \equiv 2 \pmod{4}$ for which \mathcal{O}_L is \mathfrak{A}_{H_i} -free for all $i \in \{1, 2, 3\}$ are of the form $L = \mathbb{Q}(\sqrt{m}, \sqrt{2})$.

Case 3: $m \equiv 1 \pmod{4}$, $n, k \not\equiv 1 \pmod{4}$

Daniel Gil Muñoz Quartic extensions of Q

Case 3: $m \equiv 1 \pmod{4}$, $n, k \not\equiv 1 \pmod{4}$

Reduced matrices of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

Case 3: $m \equiv 1 \pmod{4}$, $n, k \not\equiv 1 \pmod{4}$

Reduced matrices of $M(H_i, L)$, $i \in \{1, 2, 3\}$:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

Given $\beta \in \mathcal{O}_L$,

$$D_{\beta}(H_{1},L) = -8\beta_{2}(2\beta_{1}+\beta_{2})\left(2d\beta_{3}^{2}+2d\beta_{3}\beta_{4}+\frac{1}{2}\left(d+\frac{m}{d}\right)\beta_{4}^{2}\right),$$

$$D_{\beta}(H_{1},L) = 4(2\beta_{1}+\beta_{2})(2\beta_{2}+\beta_{3})\left(d\beta_{2}^{2}+\frac{n}{d}\beta_{4}^{2}\right)$$

$$D_{\beta}(H_{2},L) = 4(2\beta_{1} + \beta_{2})(2\beta_{3} + \beta_{4})(d\beta_{2} + \frac{n}{d}\beta_{4}),$$
$$D_{\beta}(H_{3},L) = 4\beta_{4}(2\beta_{1} + \beta_{2})\left(\frac{m}{d}\beta_{2}^{2} + 4\frac{n}{d}\beta_{3}^{2} + 4\frac{n}{d}\beta_{3}\beta_{4} + \frac{n}{d}\beta_{4}^{2}\right).$$

Case 3: $m \equiv 1 \pmod{4}$, $n, k \not\equiv 1 \pmod{4}$

Proposition

- O_L is 𝔄_{H₁}-free if and only if there exist integers x, y ∈ ℤ such that x² + my² = ±2d.
- \mathcal{O}_L is not \mathfrak{A}_{H_2} -free nor \mathfrak{A}_{H_3} -free.

Case 3: $m \equiv 1 \pmod{4}$, $n, k \not\equiv 1 \pmod{4}$

Proposition

- O_L is 𝔄_{H₁}-free if and only if there exist integers x, y ∈ ℤ such that x² + my² = ±2d.
- \mathcal{O}_L is not \mathfrak{A}_{H_2} -free nor \mathfrak{A}_{H_3} -free.

Corollary

If m > 0, \mathcal{O}_L is not \mathfrak{A}_{H_1} -free.

- F. Ferri, I. del Corso, D. Lombardo; How far is an extension of p-adic fields from having a normal integral basis?, Preprint
- D. Gil-Muñoz, A. Rio; *On Induced Hopf Galois structures and their Local Hopf Galois modules,* To appear in Publications Matemàtiques
- R.H. Hudson, K. S. Williams; *The integers of a cyclic quartic field,* Rocky Mountain Journal of Mathematics, No. 1 Vol. 20 (1990), 145-150
- P.J. Truman; Hopf-Galois module structure of tame biquadratic extensions, Journal de Théorie des Nombres de Bordeaux, No. 1 Vol. 24 (2012), 173-199
- Schuler fields, Universitext, Springer, 1977 D.A. Marcus; Number fields, Universitext, Springer, 1977

Thank you for your attention