Hopf Galois module structure of quartic Galois extensions of \mathbb{Q}

Daniel Gil Muñoz

Universitat Politècnica de Catalunya
Departament de Matemàtiques

Hopf Algebras \& Galois Module Theory Omaha (virtually), May 2021

Joint work with Anna Rio

L / \mathbb{Q} quartic Galois extension of \mathbb{Q}.
 H Hopf Galois structure of L / \mathbb{Q}.

L / \mathbb{Q} quartic Galois extension of \mathbb{Q}.
 H Hopf Galois structure of L / \mathbb{Q}.
 Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

L / \mathbb{Q} quartic Galois extension of \mathbb{Q}.
H Hopf Galois structure of L / \mathbb{Q}.
Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N / \mathbb{Q} is an abelian extension with group G, \mathcal{O}_{N} is $\mathfrak{A}_{N / \mathbb{Q}}$-free.

L / \mathbb{Q} quartic Galois extension of \mathbb{Q}.
H Hopf Galois structure of L / \mathbb{Q}.
Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N / \mathbb{Q} is an abelian extension with group G, \mathcal{O}_{N} is $\mathfrak{A}_{N / \mathbb{Q}}$-free.
Classical Galois structure \checkmark

L / \mathbb{Q} quartic Galois extension of \mathbb{Q}.
H Hopf Galois structure of L / \mathbb{Q}.
Is \mathcal{O}_{L} free over \mathfrak{A}_{H} ?

Theorem (Leopoldt)

If N / \mathbb{Q} is an abelian extension with group G, \mathcal{O}_{N} is $\mathfrak{A}_{N / \mathbb{Q}}$-free.
Classical Galois structure \checkmark
What about the non-classical Hopf Galois structures?

Table of contents

(1) Hopf Galois module structure

- The reduction method
- Determining the \mathfrak{A}_{H}-freeness of \mathcal{O}_{L}
(2) Cyclic quartic extensions of \mathbb{Q}
(3) Biquadratic extensions of \mathbb{Q}

Table of contents

(1) Hopf Galois module structure
(2) Cyclic quartic extensions of \mathbb{Q}
(3) Biquadratic extensions of \mathbb{Q}

L/K H-Galois extension of number fields.

L/K H-Galois extension of number fields.

L/K H-Galois extension of number fields. Assume that \mathcal{O}_{K} is a PID.

L/K H-Galois extension of number fields. Assume that \mathcal{O}_{K} is a PID.

Normal basis theorem (HG version): L is H-free of rank one.

L/K H-Galois extension of number fields. Assume that \mathcal{O}_{K} is a PID.
Normal basis theorem (HG version): L is H-free of rank one.

Associated order of \mathcal{O}_{L} in H :

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\} .
$$

L/K H-Galois extension of number fields. Assume that \mathcal{O}_{K} is a PID.
Normal basis theorem (HG version): L is H-free of rank one.

Associated order of \mathcal{O}_{L} in H :

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\} .
$$

If \mathcal{O}_{L} is \mathfrak{H}-free, then $\mathfrak{H}=\mathfrak{A}_{H}$.

L/K H-Galois extension of number fields.
Assume that \mathcal{O}_{K} is a PID.
Normal basis theorem (HG version): L is H-free of rank one.

Associated order of \mathcal{O}_{L} in H :

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\} .
$$

If \mathcal{O}_{L} is \mathfrak{H}-free, then $\mathfrak{H}=\mathfrak{A}_{H}$.
Two kind of problems:

- Compute an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.
- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

L/K H-Galois extension of number fields.
Assume that \mathcal{O}_{K} is a PID.
Normal basis theorem (HG version): L is H-free of rank one.

Associated order of \mathcal{O}_{L} in H :

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\} .
$$

If \mathcal{O}_{L} is \mathfrak{H}-free, then $\mathfrak{H}=\mathfrak{A}_{H}$.
Two kind of problems:

- Compute an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.
- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

L/K H-Galois of degree n.

L/K H-Galois of degree n.
$W=\left\{w_{i}\right\}_{i=1}^{n} K$-basis of $H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K$-basis of L.

L/K H-Galois of degree n.

$W=\left\{w_{i}\right\}_{i=1}^{n} K$-basis of $H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K$-basis of L.
For $1 \leq j \leq n$, set

$$
M_{j}(H, L):=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\left(w_{1} \cdot \gamma_{j}\right)_{B} & \left(w_{2} \cdot \gamma_{j}\right)_{B} & \ldots & \left(w_{n} \cdot \gamma_{j}\right)_{B} \\
\mid & \mid & \ldots & \mid
\end{array}\right) \in \mathcal{M}_{n}(K),
$$

L/K H-Galois of degree n.

$$
W=\left\{w_{i}\right\}_{i=1}^{n} K \text {-basis of } H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K \text {-basis of } L .
$$

For $1 \leq j \leq n$, set

$$
M_{j}(H, L):=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\left(w_{1} \cdot \gamma_{j}\right)_{B} & \left(w_{2} \cdot \gamma_{j}\right)_{B} & \ldots & \left(w_{n} \cdot \gamma_{j}\right)_{B} \\
\mid & \mid & \cdots & \mid
\end{array}\right) \in \mathcal{M}_{n}(K)
$$

The matrix of the action of H on L is defined as

$$
M(H, L)=\left(\begin{array}{c}
M_{1}(H, L) \\
\cdots \\
M_{n}(H, L)
\end{array}\right) \in \mathcal{M}_{n^{2} \times n}(K)
$$

The matrix of the action of H on L is defined as

$$
M(H, L)=\left(\frac{M_{1}(H, L)}{\cdots}\right) \in \mathcal{M}_{n^{2} \times n}(K)
$$

The matrix of the action of H on L is defined as

$$
M(H, L)=\left(\frac{M_{1}(H, L)}{\cdots}\right) \in \mathcal{M}_{n^{2} \times n}(K) .
$$

It is the matrix of the linear map

$$
\begin{aligned}
\rho_{H}: \quad H & \longrightarrow \operatorname{End}_{K}(L) \\
h & \longmapsto x \mapsto h \cdot x
\end{aligned}
$$

The matrix of the action of H on L is defined as

$$
M(H, L)=\left(\begin{array}{c}
M_{1}(H, L) \\
\cdots \\
M_{n}(H, L)
\end{array}\right) \in \mathcal{M}_{n^{2} \times n}(K)
$$

It is the matrix of the linear map

$$
\begin{aligned}
\rho_{H}: \quad H & \longrightarrow \operatorname{End}_{K}(L) \cong \mathcal{M}_{n}(K) \\
h & \longmapsto x \mapsto h \cdot x
\end{aligned}
$$

The matrix of the action of H on L is defined as

$$
M(H, L)=\left(\begin{array}{c}
M_{1}(H, L) \\
\cdots \\
M_{n}(H, L)
\end{array}\right) \in \mathcal{M}_{n^{2} \times n}(K)
$$

It is the matrix of the linear map

$$
\begin{aligned}
\rho_{H}: \quad H & \longrightarrow \operatorname{End}_{K}(L) \cong \mathcal{M}_{n}(K) \\
h & \longmapsto x \mapsto h \cdot x
\end{aligned}
$$

In $\operatorname{End}_{K}(L)$ we fix the canonical basis (with respect to B).

Assume that B is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}.

Assume that B is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}.

Key idea: We reduce integrally $M(H, L)$ to an $n \times n$ matrix.

Assume that B is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}.

Key idea: We reduce integrally $M(H, L)$ to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_{n}(K)$ and a unimodular matrix $U \in \mathrm{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ with the property that

$$
U M(H, L)=\binom{D}{O}
$$

We say that D is a reduced matrix of $M(H, L)$.

Assume that B is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}.

Key idea: We reduce integrally $M(H, L)$ to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_{n}(K)$ and a unimodular matrix $U \in \mathrm{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ with the property that

$$
U M(H, L)=\binom{D}{O}
$$

We say that D is a reduced matrix of $M(H, L)$.
D is a change basis matrix from a basis of \mathfrak{A}_{H} to W.

Assume that B is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}.
Key idea: We reduce integrally $M(H, L)$ to an $n \times n$ matrix.

Theorem

There is a matrix $D \in \mathcal{M}_{n}(K)$ and a unimodular matrix $U \in \mathrm{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ with the property that

$$
U M(H, L)=\binom{D}{O}
$$

We say that D is a reduced matrix of $M(H, L)$.
D is a change basis matrix from a basis of \mathfrak{A}_{H} to W.
The columns of D^{-1} form a basis of the associated order \mathfrak{A}_{H}.

- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

Let $\beta=\sum_{j=1}^{n} \beta_{j} \gamma_{j} \in \mathcal{O}_{L}$ be a potential $\mathfrak{A}_{H^{-}}$generator of \mathcal{O}_{L}.

- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

Let $\beta=\sum_{j=1}^{n} \beta_{j} \gamma_{j} \in \mathcal{O}_{L}$ be a potential $\mathfrak{A}_{H^{-}}$-generator of \mathcal{O}_{L}.
We define $M_{\beta}(H, L):=\sum_{j=1}^{n} \beta_{j} M_{j}(H, L)$.

- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

Let $\beta=\sum_{j=1}^{n} \beta_{j} \gamma_{j} \in \mathcal{O}_{L}$ be a potential \mathfrak{A}_{H}-generator of \mathcal{O}_{L}.
We define $M_{\beta}(H, L):=\sum_{j=1}^{n} \beta_{j} M_{j}(H, L)$.
Then,

$$
\begin{aligned}
M_{\beta}(H, L) & =\sum_{j=1}^{n} \beta_{j} M_{j}(H, L) \\
& =\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\left(w_{1} \cdot \beta\right)_{B} & \left(w_{2} \cdot \beta\right)_{B} & \ldots & \left(w_{n} \cdot \beta\right)_{B} \\
\mid & \mid & \ldots & \mid
\end{array}\right)
\end{aligned}
$$

- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

Let $\beta=\sum_{j=1}^{n} \beta_{j} \gamma_{j} \in \mathcal{O}_{L}$ be a potential \mathfrak{A}_{H}-generator of \mathcal{O}_{L}.
We define $M_{\beta}(H, L):=\sum_{j=1}^{n} \beta_{j} M_{j}(H, L)$.
Then,

$$
\begin{aligned}
M_{\beta}(H, L) & =\sum_{j=1}^{n} \beta_{j} M_{j}(H, L) \\
& =\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\left(w_{1} \cdot \beta\right)_{B} & \left(w_{2} \cdot \beta\right)_{B} & \ldots & \left(w_{n} \cdot \beta\right)_{B} \\
\mid & \mid & \ldots & \mid
\end{array}\right)
\end{aligned}
$$

If $\mathfrak{H}:=\left\langle w_{1}, \ldots, w_{n}\right\rangle_{\mathcal{O}_{K}}$,

$$
D_{\beta}(H, L):=\operatorname{det}\left(M_{\beta}(H, L)\right)=\left[\mathcal{O}_{L}: \mathfrak{H} \cdot \beta\right]_{\mathcal{O}_{K}} .
$$

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

$$
\Longrightarrow I_{W}(H, L):=\left[\mathfrak{A}_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}=\operatorname{det}(D) .
$$

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

$$
\begin{aligned}
& \Longrightarrow I_{W}(H, L):=\left[\mathfrak{A}_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}=\operatorname{det}(D) \\
& \quad\left[\mathcal{O}_{L}: \mathfrak{H} \cdot \beta\right]_{\mathcal{O}_{K}}=\left[\mathcal{O}_{L}: \mathfrak{A}_{H} \cdot \beta\right]_{\mathcal{O}_{K}}\left[\mathfrak{A}_{H} \cdot \beta: \mathfrak{H} \cdot \beta\right]_{\mathcal{O}_{K}}
\end{aligned}
$$

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

$$
\begin{aligned}
& \Longrightarrow I_{W}(H, L):=\left[\mathfrak{A} H_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}=\operatorname{det}(D) \\
& \quad\left[\mathcal{O}_{L}: \mathfrak{H} \cdot \beta\right]_{\mathcal{O}_{K}}=\left[\mathcal{O}_{L}: \mathfrak{A}_{H} \cdot \beta\right]_{\mathcal{O}_{K}}\left[\mathfrak{A}_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}
\end{aligned}
$$

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

$$
\begin{aligned}
& \Longrightarrow I_{W}(H, L):=\left[\mathfrak{A}_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}=\operatorname{det}(D) \\
& D_{\beta}(H, L)=\left[\mathcal{O}_{L}: \mathfrak{A}_{H} \cdot \beta\right]_{\mathcal{O}_{K}} I_{W}(H, L)
\end{aligned}
$$

Now, D is the change basis matrix from a basis of \mathfrak{A}_{H} to a basis of \mathfrak{H}.

$$
\begin{aligned}
& \Longrightarrow I_{W}(H, L):=\left[\mathfrak{A}_{H}: \mathfrak{H}\right]_{\mathcal{O}_{K}}=\operatorname{det}(D) \\
& D_{\beta}(H, L)=\left[\mathcal{O}_{L}: \mathfrak{A}_{H} \cdot \beta\right]_{\mathcal{O}_{K}} I_{W}(H, L)
\end{aligned}
$$

Corollary

\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator β if and only if $I_{W}(H, L)=D_{\beta}(H, L)$ up to multiplication by a unit of \mathcal{O}_{K}.

Procedure:

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.
2. We compute a reduced matrix of $M(H, L)$ and $I_{W}(H, L)$.

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.
2. We compute a reduced matrix of $M(H, L)$ and $I_{W}(H, L)$.
3. For a given $\beta \in \mathcal{O}_{L}$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.
2. We compute a reduced matrix of $M(H, L)$ and $I_{W}(H, L)$.
3. For a given $\beta \in \mathcal{O}_{L}$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.
4. If $D_{\beta}(H, L)=I_{W}(H, L)$ (up to multiplication by unit), then \mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator β.

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.
2. We compute a reduced matrix of $M(H, L)$ and $I_{W}(H, L)$.
3. For a given $\beta \in \mathcal{O}_{L}$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.
4. If $D_{\beta}(H, L)=I_{W}(H, L)$ (up to multiplication by unit), then \mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator β.

If $K=\mathbb{Q}$, we need $D_{\beta}(H, L)=I_{W}(H, L)$ up to sign.

Procedure:

1. We find the entries of $M(H, L)$, where in L we fix an integral basis B.
2. We compute a reduced matrix of $M(H, L)$ and $I_{W}(H, L)$.
3. For a given $\beta \in \mathcal{O}_{L}$, we find the determinant $D_{\beta}(H, L)$ of the matrix $M_{\beta}(H, L)$.
4. If $D_{\beta}(H, L)=I_{W}(H, L)$ (up to multiplication by unit), then \mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator β.

If $K=\mathbb{Q}$, we need $D_{\beta}(H, L)=I_{W}(H, L)$ up to sign.

Assume L / K is Galois with group G.

Assume L / K is Galois with group G.
Suppose that we know how G acts on some K-basis of L.

Assume L / K is Galois with group G.
Suppose that we know how G acts on some K-basis of L.
Let H be a Hopf Galois structure of L / K.

Assume L / K is Galois with group G.
Suppose that we know how G acts on some K-basis of L.
Let H be a Hopf Galois structure of L / K.

- Since H acts as linear combinations of elements of G, we know how H acts on that K-basis of L.

Assume L / K is Galois with group G.
Suppose that we know how G acts on some K-basis of L.
Let H be a Hopf Galois structure of L / K.

- Since H acts as linear combinations of elements of G, we know how H acts on that K-basis of L.
- The action of H on any other K-basis of L is computed using the linearity (change basis of L).

Assume L / K is Galois with group G.
Suppose that we know how G acts on some K-basis of L.
Let H be a Hopf Galois structure of L / K.

- Since H acts as linear combinations of elements of G, we know how H acts on that K-basis of L.
- The action of H on any other K-basis of L is computed using the linearity (change basis of L).

Shortcut

In order to determine the action of H on any K-basis of L, it is enough to know the action of G on some K-basis of L.

Table of contents

(1) Hopf Galois module structure

(2) Cyclic quartic extensions of \mathbb{Q}
(3) Biquadratic extensions of \mathbb{Q}

Let L / K be a cyclic quartic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma\rangle$.

Let L / K be a cyclic quartic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma\rangle$.
Greither-Pareigis: Hopf Galois structures of L / K correspond to regular G-stable subgroups of $\operatorname{Perm}(G)$.

Let L / K be a cyclic quartic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma\rangle$.
Greither-Pareigis: Hopf Galois structures of L / K correspond to regular G-stable subgroups of $\operatorname{Perm}(G)$.
There are two: $\lambda(G)$ and the one generated by the premutations

$$
\mu=\left(1_{G}, \sigma^{2}\right)\left(\sigma, \sigma^{3}\right), \eta=\left(1_{G}, \sigma\right)\left(\sigma^{2}, \sigma^{3}\right)
$$

Let L / K be a cyclic quartic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma\rangle$.
Greither-Pareigis: Hopf Galois structures of L / K correspond to regular G-stable subgroups of $\operatorname{Perm}(G)$.
There are two: $\lambda(G)$ and the one generated by the premutations

$$
\mu=\left(1_{G}, \sigma^{2}\right)\left(\sigma, \sigma^{3}\right), \eta=\left(1_{G}, \sigma\right)\left(\sigma^{2}, \sigma^{3}\right)
$$

Proposition

L/K has a unique non-classical Hopf Galois structure, which has K-basis

$$
\{\operatorname{Id}, \mu, \eta+\mu \eta, z(\eta-\mu \eta)\}
$$

where z is the square root of a non-square element in K.

Let L / \mathbb{Q} be a cyclic quartic extension of number fields.

Let L / \mathbb{Q} be a cyclic quartic extension of number fields.
 We need:

Let L / \mathbb{Q} be a cyclic quartic extension of number fields.
 We need:

1. A \mathbb{Z}-basis of \mathcal{O}_{L}.

Let L / \mathbb{Q} be a cyclic quartic extension of number fields.
We need:

1. A \mathbb{Z}-basis of \mathcal{O}_{L}.
2. The action of H on that basis.

Let L / \mathbb{Q} be a cyclic quartic extension of number fields. We need:

1. A \mathbb{Z}-basis of \mathcal{O}_{L}.
2. The action of H on that basis.

Proposition

$L=\mathbb{Q}(\sqrt{a(d+b \sqrt{d})})$, where:

- $a \in \mathbb{Z}$ is odd square-free and $b \in \mathbb{Z}_{>0}$.
- $d=b^{2}+c^{2}$ for some $c \in \mathbb{Z}_{>0}$ and d is square-free.
- $\operatorname{gcd}(a, d)=1$.

Let $z=\sqrt{a(d+b \sqrt{d})}$.

Daniel Gil Muñoz
Quartic extensions of \mathbb{Q}

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})}$

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})} \Longrightarrow$ the roots of f are z, w and their negatives.

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})} \Longrightarrow$ the roots of f are z, w and their negatives.
Elements of G are permutations of $\{z, w,-z,-w\}$.

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})} \Longrightarrow$ the roots of f are z, w and their negatives.
Elements of G are permutations of $\{z, w,-z,-w\}$. We can assume that $\sigma=(z, w,-z,-w)$.

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})} \Longrightarrow$ the roots of f are z, w and their negatives.
Elements of G are permutations of $\{z, w,-z,-w\}$. We can assume that $\sigma=(z, w,-z,-w)$.
Then, we know how G acts on the K-basis $\{1, \sqrt{d}, z, w\}$ of L :

Let $z=\sqrt{a(d+b \sqrt{d})}$. The minimal polynomial of z is

$$
f(x)=x^{4}-2 a d x^{2}+a^{2} c^{2} d
$$

Let $w=\sqrt{a(d-b \sqrt{d})} \Longrightarrow$ the roots of f are z, w and their negatives.
Elements of G are permutations of $\{z, w,-z,-w\}$. We can assume that $\sigma=(z, w,-z,-w)$.
Then, we know how G acts on the K-basis $\{1, \sqrt{d}, z, w\}$ of L :

$$
\begin{array}{ll}
\sigma(\sqrt{d})=-\sqrt{d}, & \sigma(z)=w, \quad \sigma(w)=-z \\
\sigma^{2}(\sqrt{d})=\sqrt{d}, \quad \sigma^{2}(z)=-z, \quad \sigma^{2}(w)=-w \\
\sigma^{3}(\sqrt{d})=-\sqrt{d}, \quad \sigma^{3}(z)=-w, \quad \sigma^{3}(w)=z
\end{array}
$$

We are able to determine the action of a Hopf Galois structure on any K-basis of L.

We are able to determine the action of a Hopf Galois structure on any K-basis of L.

In particular, on the integral ones.

We are able to determine the action of a Hopf Galois structure on any K-basis of L.

In particular, on the integral ones.

Case	Integral basis
1	$\{1, \sqrt{d}, z, w\}$
2	$\left\{1, \frac{1+\sqrt{d}}{2}, z, w\right\}$
3	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{z+w}{2}, \frac{z-w}{2}\right\}$
4	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z+w}{4}, \frac{1-\sqrt{d}+z-w}{4}\right\}$
5	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z-w}{4}, \frac{1-\sqrt{d}+z+w}{4}\right\}$

We are able to determine the action of a Hopf Galois structure on any K-basis of L.

In particular, on the integral ones.

Case	Integral basis
1	$\{1, \sqrt{d}, z, w\}$
2	$\left\{1, \frac{1+\sqrt{d}}{2}, z, w\right\}$
3	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{z+w}{2}, \frac{z-w}{2}\right\}$
4	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z+w}{4}, \frac{1-\sqrt{d}+z-w}{4}\right\}$
5	$\left\{1, \frac{1+\sqrt{d}}{2}, \frac{1+\sqrt{d}+z-w}{4}, \frac{1-\sqrt{d}+z+w}{4}\right\}$

We call $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ the integral basis of L.

Case 1:

$$
D=\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
0 & 2 & 2 & -2 c \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2 b
\end{array}\right) \quad \begin{aligned}
& I_{W}(H, L)=16 b \\
& D_{\beta}(H, L)=16 b \beta_{1} \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)
\end{aligned}
$$

Case 1:

$D=\left(\begin{array}{cccc}1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2 c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 b\end{array}\right)$

$$
\begin{aligned}
& I_{W}(H, L)=16 b \\
& D_{\beta}(H, L)=16 b \beta_{1} \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)
\end{aligned}
$$

\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}$.

Case 1:
$D=\left(\begin{array}{cccc}1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2 c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 b\end{array}\right) \quad \begin{aligned} & I_{W}(H, L)=16 b \\ & D_{\beta}(H, L)=16 b \beta_{1} \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\end{aligned}$
\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}$.
Cases 2 and 3 :
$D=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -2 c \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 b\end{array}\right)$

$$
\begin{aligned}
& I_{W}(H, L)=8 b \\
& D_{\beta}(H, L)= \pm 8 b \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\left(2 \beta_{1}+\beta_{2}\right)
\end{aligned}
$$

Case 1:
$D=\left(\begin{array}{cccc}1 & 1 & 2 & 0 \\ 0 & 2 & 2 & -2 c \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 b\end{array}\right) \quad \begin{aligned} & I_{W}(H, L)=16 b \\ & D_{\beta}(H, L)=16 b \beta_{1} \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\end{aligned}$
\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}$.
Cases 2 and 3 :
$D=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -2 c \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 b\end{array}\right)$

$$
\begin{aligned}
& I_{W}(H, L)=8 b \\
& D_{\beta}(H, L)= \pm 8 b \beta_{2}\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\left(2 \beta_{1}+\beta_{2}\right)
\end{aligned}
$$

\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{2}+\gamma_{3}$.

Cases 4 and 5:
$D=\left(\begin{array}{cccc}1 & 0 & 0 & c \\ 0 & 1 & 0 & -c \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2 b\end{array}\right)$

$$
\begin{aligned}
& I_{W}(H, L)=2 b \\
& D_{\beta}(H, L)=\mp 2 b\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\left(2 \beta_{2}+\beta_{3}-\right. \\
& \left.\beta_{4}\right)\left(4 \beta_{1}+2 \beta_{2}+\beta_{3}+\beta_{4}\right)
\end{aligned}
$$

Cases 4 and 5:
$D=\left(\begin{array}{cccc}1 & 0 & 0 & c \\ 0 & 1 & 0 & -c \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2 b\end{array}\right)$

$$
I_{w}(H, L)=2 b
$$

$$
D_{\beta}(H, L)=\mp 2 b\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\left(2 \beta_{2}+\beta_{3}-\right.
$$

$$
\left.\beta_{4}\right)\left(4 \beta_{1}+2 \beta_{2}+\beta_{3}+\beta_{4}\right)
$$

\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{2}-\gamma_{3}$.

Cases 4 and 5:
$D=\left(\begin{array}{cccc}1 & 0 & 0 & c \\ 0 & 1 & 0 & -c \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2 b\end{array}\right) \quad \begin{aligned} & I_{W}(H, L)=2 b \\ & D_{\beta}(H, L)=\mp 2 b\left(\beta_{3}^{2}+\beta_{4}^{2}\right)\left(2 \beta_{2}+\beta_{3}-\right. \\ & \left.\beta_{4}\right)\left(4 \beta_{1}+2 \beta_{2}+\beta_{3}+\beta_{4}\right)\end{aligned}$
\mathcal{O}_{L} is \mathfrak{A}_{H}-free with generator $\beta=\gamma_{2}-\gamma_{3}$.

Theorem

Let L / \mathbb{Q} is a cyclic quartic extension. Then \mathcal{O}_{L} is free over its associated order at every Hopf Galois structure of L / \mathbb{Q}.

Table of contents

(1) Hopf Galois module structure
(2) Cyclic quartic extensions of \mathbb{Q}
(3) Biquadratic extensions of \mathbb{Q}

Let L / K be a biquadratic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma, \tau\rangle$.

Let L / K be a biquadratic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma, \tau\rangle$.
There are three non-classical Hopf Galois structures, given by the subgroups generated by:

- $\eta_{1}=\left(1_{G}, \sigma \tau, \tau, \sigma\right)$.
- $\eta_{2}=\left(1_{G}, \sigma \tau, \sigma, \tau\right)$.
- $\eta_{3}=\left(1_{G}, \tau, \sigma \tau, \sigma\right)$.

Let L / K be a biquadratic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma, \tau\rangle$.
There are three non-classical Hopf Galois structures, given by the subgroups generated by:

- $\eta_{1}=\left(1_{G}, \sigma \tau, \tau, \sigma\right)$.
- $\eta_{2}=\left(1_{G}, \sigma \tau, \sigma, \tau\right)$.
- $\eta_{3}=\left(1_{G}, \tau, \sigma \tau, \sigma\right)$.

Proposition

The non-classical Hopf Galois structures $\left\{H_{i}\right\}_{i=1}^{3}$ have K-bases

$$
\left\{\mathrm{Id}, \eta_{i}^{2}, \eta_{i}+\eta_{i}^{3}, z_{i}\left(\eta_{i}-\eta_{i}^{3}\right)\right\}
$$

where:

Let L / K be a biquadratic extension with $G=\operatorname{Gal}(L / K)=\langle\sigma, \tau\rangle$.
There are three non-classical Hopf Galois structures, given by the subgroups generated by:

- $\eta_{1}=\left(1_{G}, \sigma \tau, \tau, \sigma\right)$.
- $\eta_{2}=\left(1_{G}, \sigma \tau, \sigma, \tau\right)$.
- $\eta_{3}=\left(1_{G}, \tau, \sigma \tau, \sigma\right)$.

Proposition

The non-classical Hopf Galois structures $\left\{H_{i}\right\}_{i=1}^{3}$ have K-bases

$$
\left\{\mathrm{Id}, \eta_{i}^{2}, \eta_{i}+\eta_{i}^{3}, z_{i}\left(\eta_{i}-\eta_{i}^{3}\right)\right\}
$$

where:

- $E_{1}=L^{\langle\tau\rangle}, E_{2}=L^{\langle\sigma\rangle}, E_{3}=L^{\langle\sigma \tau\rangle}$.
- For each $i \in\{1,2,3\}, z_{i} \in E_{i}-K$ and $z_{i}^{2} \in K$.

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$. $L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.
$L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

- $m, n \in \mathbb{Z}$ square-free.

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.
$L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

- $m, n \in \mathbb{Z}$ square-free.
- $k=\frac{m n}{d^{2}}, d=\operatorname{gcd}(m, n)$.

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.
$L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

- $m, n \in \mathbb{Z}$ square-free.
- $k=\frac{m n}{d^{2}}, d=\operatorname{gcd}(m, n)$.
- m, n and k are exchangeable.

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.
$L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

- $m, n \in \mathbb{Z}$ square-free.
- $k=\frac{m n}{d^{2}}, d=\operatorname{gcd}(m, n)$.
- m, n and k are exchangeable.

Lattice of intermediate fields:

Let L / \mathbb{Q} be a biquadratic extension with $G=\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma, \tau\rangle$.
$L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ with:

- $m, n \in \mathbb{Z}$ square-free.
- $k=\frac{m n}{d^{2}}, d=\operatorname{gcd}(m, n)$.
- m, n and k are exchangeable.

Lattice of intermediate fields:

Action of G on the K-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of L :

$$
\begin{aligned}
& \sigma(\sqrt{m})=-\sqrt{m}, \quad \sigma(\sqrt{n})=\sqrt{n}, \quad \sigma(\sqrt{k})=-\sqrt{k}, \\
& \tau(\sqrt{m})=\sqrt{m}, \quad \tau(\sqrt{n})=-\sqrt{n}, \quad \tau(\sqrt{k})=-\sqrt{k}, \\
& \sigma \tau(\sqrt{m})=-\sqrt{m}, \quad \sigma \tau(\sqrt{n})=-\sqrt{n}, \quad \sigma \tau(\sqrt{k})=\sqrt{k}
\end{aligned}
$$

Action of G on the K-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of L :

$$
\begin{aligned}
& \sigma(\sqrt{m})=-\sqrt{m}, \quad \sigma(\sqrt{n})=\sqrt{n}, \quad \sigma(\sqrt{k})=-\sqrt{k}, \\
& \tau(\sqrt{m})=\sqrt{m}, \quad \tau(\sqrt{n})=-\sqrt{n}, \quad \tau(\sqrt{k})=-\sqrt{k}, \\
& \sigma \tau(\sqrt{m})=-\sqrt{m}, \quad \sigma \tau(\sqrt{n})=-\sqrt{n}, \quad \sigma \tau(\sqrt{k})=\sqrt{k}
\end{aligned}
$$

Case	Integral basis
$m, n, k \equiv 1(4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2},\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)\right\}$
$m \equiv 3(4), n, k \equiv 2(4)$	$\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}$
$m \equiv 1(4), n, k \not \equiv 1(4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}$

Action of G on the K-basis $\{1, \sqrt{m}, \sqrt{n}, \sqrt{k}\}$ of L :

$$
\begin{aligned}
& \sigma(\sqrt{m})=-\sqrt{m}, \quad \sigma(\sqrt{n})=\sqrt{n}, \quad \sigma(\sqrt{k})=-\sqrt{k}, \\
& \tau(\sqrt{m})=\sqrt{m}, \quad \tau(\sqrt{n})=-\sqrt{n}, \quad \tau(\sqrt{k})=-\sqrt{k}, \\
& \sigma \tau(\sqrt{m})=-\sqrt{m}, \quad \sigma \tau(\sqrt{n})=-\sqrt{n}, \quad \sigma \tau(\sqrt{k})=\sqrt{k}
\end{aligned}
$$

Case	Integral basis
$m, n, k \equiv 1(4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2},\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)\right\}$
$m \equiv 3(4), n, k \equiv 2(4)$	$\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}$
$m \equiv 1(4), n, k \equiv 1(4)$	$\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}$

L / K is tamely ramified if and only if $m, n \equiv 1(\bmod 4)$

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{\mathrm{a}}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{a}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

His proof uses the theory of idèles.

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{a}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

His proof uses the theory of idèles.
$x^{2}+a y^{2}= \pm 2 g$ are generalized Pell equations.

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{a}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

His proof uses the theory of idèles. $x^{2}+a y^{2}= \pm 2 g$ are generalized Pell equations.

- If $a>0$, they have a finite number of solutions.

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{a}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

His proof uses the theory of idèles.
$x^{2}+a y^{2}= \pm 2 g$ are generalized Pell equations.

- If $a>0$, they have a finite number of solutions.
- If $a<0$, there could be infinitely many and there are algorithms of computation.

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition (Truman)

Let $L=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with $a, b \equiv 1(\bmod 4)$, and let $g=\operatorname{gcd}(a, b)$. If H is the non-classical Hopf Galois structure of L / \mathbb{Q} given by $\sqrt{a}, \mathcal{O}_{L}$ is \mathfrak{A}_{H}-free if and only if there are $x, y \in \mathbb{Z}$ such that

$$
x^{2}+a y^{2}= \pm 2 g
$$

His proof uses the theory of idèles.
$x^{2}+a y^{2}= \pm 2 g$ are generalized Pell equations.

- If $a>0$, they have a finite number of solutions.
- If $a<0$, there could be infinitely many and there are algorithms of computation.

What if we use the reduction method?

Case 1: $m, n, k \equiv 1(\bmod 4)$

Reduced matrix of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

Reduced matrix of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

For $\beta \in \mathcal{O}_{L}$,

$$
\begin{aligned}
& D_{\beta}\left(H_{1}, L\right)=-2\left(2 \beta_{2}+\beta_{4}\right)\left(4 \beta_{1}+2 \beta_{2}+2 \beta_{3}+\beta_{4}\right) \\
&\left(2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}\right) .
\end{aligned}
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

Reduced matrix of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

For $\beta \in \mathcal{O}_{L}$,

$$
\begin{array}{r}
D_{\beta}\left(H_{1}, L\right)=-2\left(2 \beta_{2}+\beta_{4}\right)\left(4 \beta_{1}+2 \beta_{2}+2 \beta_{3}+\beta_{4}\right) \\
\left(2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}\right) .
\end{array}
$$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1 .
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1 .
$$

Let $f\left(\beta_{3}\right)=2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}-s, s \in\{-1,1\}$.

Case 1: $m, n, k \equiv 1(\bmod 4)$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1 .
$$

Let $f\left(\beta_{3}\right)=2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}-s, s \in\{-1,1\}$. It has discriminant

$$
\Delta=4\left(-m \beta_{4}^{2}+2 d s\right)
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1 .
$$

Let $f\left(\beta_{3}\right)=2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}-s, s \in\{-1,1\}$. It has discriminant

$$
\Delta=4\left(-m \beta_{4}^{2}+2 d s\right)
$$

This is a square if and only if there are $x, y \in \mathbb{Z}$ if and only if

$$
x^{2}=-m y^{2}+2 d s
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

If we want β to be a free generator, we must have

$$
2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}= \pm 1 .
$$

Let $f\left(\beta_{3}\right)=2 d \beta_{3}^{2}+2 m \beta_{3} \beta_{4}+\frac{m}{d} \frac{m+1}{2} \beta_{4}^{2}-s, s \in\{-1,1\}$. It has discriminant

$$
\Delta=4\left(-m \beta_{4}^{2}+2 d s\right)
$$

This is a square if and only if there are $x, y \in \mathbb{Z}$ if and only if

$$
x^{2}+m y^{2}=2 d s
$$

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition

For $i \in\{1,2,3\}, \mathcal{O}_{L}$ is $\mathfrak{A}_{H_{i}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1. $x^{2}+m y^{2}= \pm 2 d$, if $i=1$.
2. $x^{2}+n y^{2}= \pm 2 d$, if $i=2$.
3. $x^{2}+k y^{2}= \pm 2 \frac{n}{d}$, if $i=3$.

Case 1: $m, n, k \equiv 1(\bmod 4)$

Proposition

For $i \in\{1,2,3\}, \mathcal{O}_{L}$ is $\mathfrak{A}_{H_{i}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1. $x^{2}+m y^{2}= \pm 2 d$, if $i=1$.
2. $x^{2}+n y^{2}= \pm 2 d$, if $i=2$.
3. $x^{2}+k y^{2}= \pm 2 \frac{n}{d}$, if $i=3$.

This matches with Truman's result because $\frac{n}{d}=\operatorname{gcd}(k, n)$.

Hopf Galois module structure
Cyclic quartic extensions of \mathbb{Q}
Biquadratic extensions of \mathbb{Q}

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Reduced matrices of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 1 & 2 & 0 \\
0 & 2 & 2 & 2 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) .
$$

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Reduced matrices of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 1 & 2 & 0 \\
0 & 2 & 2 & 2 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) .
$$

Given $\beta \in \mathcal{O}_{L}$,

$$
\begin{gathered}
D_{\beta}\left(H_{1}, L\right)=-32 \beta_{1} \beta_{2}\left(d \beta_{3}^{2}+d \beta_{3} \beta_{4}+\frac{1}{4}\left(d+\frac{m}{d}\right) \beta_{4}^{2}\right) \\
D_{\beta}\left(H_{2}, L\right)=8 \beta_{1}\left(2 \beta_{3}+\beta_{4}\right)\left(2 d \beta_{2}^{2}+\frac{n}{2 d} \beta_{4}^{2}\right) \\
D_{\beta}\left(H_{3}, L\right)=8 \beta_{1} \beta_{4}\left(2 \frac{m}{d} \beta_{2}^{2}+2 \frac{n}{d} \beta_{3}^{2}+2 \frac{n}{d} \beta_{3} \beta_{4}+\frac{n}{2 d} \beta_{4}^{2}\right) .
\end{gathered}
$$

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Proposition

For $i \in\{1,2,3\}, \mathcal{O}_{L}$ is $\mathfrak{A}_{H_{i}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1. $x^{2}+m y^{2}= \pm 4 d$, if $i=1$.
2. $x^{2}+n y^{2}= \pm 2 d$, if $i=2$.
3. $x^{2}+k y^{2}= \pm 2 \frac{n}{d}$, if $i=3$.

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Proposition

For $i \in\{1,2,3\}, \mathcal{O}_{L}$ is $\mathfrak{A}_{H_{i}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1. $x^{2}+m y^{2}= \pm 4 d$, if $i=1$.
2. $x^{2}+n y^{2}= \pm 2 d$, if $i=2$.
3. $x^{2}+k y^{2}= \pm 2 \frac{n}{d}$, if $i=3$.
n and k play exactly the same role.

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Proposition

For $i \in\{1,2,3\}, \mathcal{O}_{L}$ is $\mathfrak{A}_{H_{i}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that:

1. $x^{2}+m y^{2}= \pm 4 d$, if $i=1$.
2. $x^{2}+n y^{2}= \pm 2 d$, if $i=2$.
3. $x^{2}+k y^{2}= \pm 2 \frac{n}{d}$, if $i=3$.
n and k play exactly the same role.

Corollary

The Pell equation $x^{2}+n y^{2}= \pm 2 d$ has solutions if and only if so has $x^{2}+n y^{2}= \pm 2 \frac{n}{d}$.

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Proposition

1. If $m>0, \mathcal{O}_{L}$ is not $\mathfrak{A}_{H_{1}}$-free unless m and n are coprime or m divides n.
2. If $n>0$ (resp. $k>0$), then \mathcal{O}_{L} is not $\mathfrak{A}_{H_{2}}$-free (resp. not $\mathfrak{A}_{H_{3}}$-free) unless $n=2 d$.

Case 2: $m \equiv 3(\bmod 4), n, k \equiv 2(\bmod 4)$

Proposition

1. If $m>0, \mathcal{O}_{L}$ is not $\mathfrak{A}_{H_{1}}$-free unless m and n are coprime or m divides n.
2. If $n>0$ (resp. $k>0$), then \mathcal{O}_{L} is not $\mathfrak{A}_{H_{2}}$-free (resp. not $\mathfrak{A}_{H_{3}}$-free) unless $n=2 d$.

Corollary

The unique totally real biquadratic extensions $L=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ of \mathbb{Q} with $m \equiv 3(\bmod 4)$ and $n \equiv 2(\bmod 4)$ for which \mathcal{O}_{L} is $\mathfrak{A}_{H_{i}}$-free for all $i \in\{1,2,3\}$ are of the form $L=\mathbb{Q}(\sqrt{m}, \sqrt{2})$.

Case $3: m \equiv 1(\bmod 4), n, k \not \equiv 1(\bmod 4)$

Case 3: $m \equiv 1(\bmod 4), n, k \not \equiv 1(\bmod 4)$

Reduced matrices of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Case 3: $m \equiv 1(\bmod 4), n, k \not \equiv 1(\bmod 4)$

Reduced matrices of $M\left(H_{i}, L\right), i \in\{1,2,3\}$:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Given $\beta \in \mathcal{O}_{L}$,

$$
\begin{gathered}
D_{\beta}\left(H_{1}, L\right)=-8 \beta_{2}\left(2 \beta_{1}+\beta_{2}\right)\left(2 d \beta_{3}^{2}+2 d \beta_{3} \beta_{4}+\frac{1}{2}\left(d+\frac{m}{d}\right) \beta_{4}^{2}\right) \\
D_{\beta}\left(H_{2}, L\right)=4\left(2 \beta_{1}+\beta_{2}\right)\left(2 \beta_{3}+\beta_{4}\right)\left(d \beta_{2}^{2}+\frac{n}{d} \beta_{4}^{2}\right) \\
D_{\beta}\left(H_{3}, L\right)=4 \beta_{4}\left(2 \beta_{1}+\beta_{2}\right)\left(\frac{m}{d} \beta_{2}^{2}+4 \frac{n}{d} \beta_{3}^{2}+4 \frac{n}{d} \beta_{3} \beta_{4}+\frac{n}{d} \beta_{4}^{2}\right)
\end{gathered}
$$

Case $3: m \equiv 1(\bmod 4), n, k \not \equiv 1(\bmod 4)$

Proposition

- \mathcal{O}_{L} is $\mathfrak{A}_{H_{1}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that $x^{2}+m y^{2}= \pm 2 d$.
- \mathcal{O}_{L} is not $\mathfrak{A}_{H_{2}}$-free nor $\mathfrak{A}_{H_{3}}$-free.

Case $3: m \equiv 1(\bmod 4), n, k \not \equiv 1(\bmod 4)$

Proposition

- \mathcal{O}_{L} is $\mathfrak{A}_{H_{1}}$-free if and only if there exist integers $x, y \in \mathbb{Z}$ such that $x^{2}+m y^{2}= \pm 2 d$.
- \mathcal{O}_{L} is not $\mathfrak{A}_{H_{2}}$-free nor $\mathfrak{A}_{H_{3}}$-free.

Corollary

If $m>0, \mathcal{O}_{L}$ is not $\mathfrak{A}_{H_{1}}$-free.

围 F．Ferri，I．del Corso，D．Lombardo；How far is an extension of p－adic fields from having a normal integral basis？， Preprint
（ D．Gil－Muñoz，A．Rio；On Induced Hopf Galois structures and their Local Hopf Galois modules，To appear in Publications Matemàtiques

围 R．H．Hudson，K．S．Williams；The integers of a cyclic quartic field，Rocky Mountain Journal of Mathematics，No． 1 Vol． 20 （1990），145－150

目 P．J．Truman；Hopf－Galois module structure of tame biquadratic extensions，Journal de Théorie des Nombres de Bordeaux，No． 1 Vol． 24 （2012），173－199

D．A．Marcus；Number fields，Universitext，Springer， 1977

Thank you for your attention

